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There are some fairly nuanced issues that arise when analyzing data
with categorical predictors and unbalanced cell sizes. In my opinion, many
textbooks fail to present these issues clearly. What follows is an attempt to
clarify the issues, using an example-based approach.

1 The issues

The problem is basically this: with equal samples sizes, you can easily con-
struct uncorrelated contrast codes, and the interpretation of the coefficients
is unambiguous and straightforward. With unequal cell sizes, contrast-coded
variables will be correlated even when the design matrix is orthogonal. This
means that in the unbalanced case, one has to decide how to treat the over-
lapping variance shared by the contrast coded variables.

Textbooks often discuss this problem under headings like weighted vs.
unweighted and types of sums of squares (SS). This focus on the different
techniques that can be used to analyze unbalanced designs can sometimes
lead students to ask questions like “which type of SS should I use”. In fact,
the real issue is that there are different hypotheses that can be tested when
you have unbalanced data, and the different techniques (types of SS etc.)
simply refer to some of these different hypotheses. In my view, it is better to
talk straightforwardly about the actual hypotheses rather than focus on the
terminology. On the other hand, it’s important to know a number of terms
so that you’ll be able to understand them when you encounter them in the
literature or in your day-to-day research activities. In this article I've tried
to explain the meaning of several key terms, while emphasizing the benefits
of talking directly about hypotheses.

1.1 Formulating hypotheses

As noted above, the central issue revolves around the question “what is the
hypotheses you want to test?” If you can answer this question clearly, the
battle is half won. In the examples that follow, I use example data from
2X2 between-participants designs. Obviously your data will not always be
this simple, but understanding the possible hypotheses in this simple case
will hopefully help you generalize to other situations as well.

So what hypotheses can we ask in the 2X2 between participants case?
Well, among other things we can ask:

1. What is the effect of variable 1 on y, ignoring variable 27

2. What is the effect of variable 2 on y, ignoring variable 17



3. What is the effect of variable 1 on y, controlling for variable 27
4. What is the effect of variable 2 on y, controlling for variable 17
5. Does the effect of variable 1 on y depend on the level of variable 27

It happens that when we have equal numbers of observations in each
cell, question 1 is the same as question 3, and question 2 is the same as 4.
Because of this, it is less likely that one will accidentally test a hypothesis
other than the one they are interested in. However, when there are unequal
numbers of observations in each cell, question 1 is not the same as question
3, and question 2 is not the same as 4. In this case, it is important to clearly
understand which hypothesis you want to test, and to make sure you are
testing what you think you are.

1.2 What does it mean to “control for” or “ignore”?

“Ignoring” means that you do not take the overlapping variance into account.
You let your predictor take credit for the overlap it shares with other predic-
tors. “Controlling for” means the same thing in this context that it usually
does in multiple regression. That is, it means that we are testing the effect
of a variable after taking out the variance due to another variable. Another
way to say it is that we are testing the effect of variable 1 after removing
the overlap between variable 1 and variable 2.

It follows that one way to understand the unequal cell size issue is to
clearly understand what the overlapping variance represents. The overlap-
ping variance represents the extent to which variable 1 can be predicted from
variable 2. For example, if you are studying depressed vs. not-depressed per-
sons, and males vs. females, it may be the case that more females than males
fall into the depressed category. This means that if you know that a person
is depressed, the probability that the person is also a female is > 50%, i.e.,
depression is correlated with gender. So do you want to control for gender
when predicting something from the depressed vs. not depressed variable?
If you do not control for it, than you are giving the depressed variable credit
for all the variance that it shares with gender. If you control for gender
when predicting your outcome from the depressed/not depressed variable,
then you are testing whether depressed status predicts the outcome over and
above the effect of gender.

Because we are talking about categorical variables, there is another way
to describe the difference between predicting your outcome from depression
and prediction your outcome from depression controlling for gender. In the



Table 1: Hypothetical Salary Data (in Thousands) for Female and Male

employees

Salary Gender Education con.gender con.education con.gen.x.edu
1 24 Female Degree 1 1 1
2 26 Female Degree 1 1 1
3 25 Female Degree 1 1 1
4 24  Female Degree 1 1 1
5 27 Female Degree 1 1 1
6 24 Female Degree 1 1 1
7 27 Female Degree 1 1 1
8 23 Female Degree 1 1 1
9 15 Female No degree 1 -1 -1
10 17 Female No degree 1 -1 -1
11 20 Female No degree 1 -1 -1
12 16 Female No degree 1 -1 -1
13 25 Male Degree -1 1 -1
14 29 Male Degree -1 1 -1
15 27 Male Degree -1 1 -1
16 19 Male No degree -1 -1 1
17 18 Male No degree -1 -1 1
18 21  Male No degree -1 —1 1
19 20 Male No degree -1 -1 1
20 21  Male No degree -1 -1 1
21 22 Male No degree -1 -1 1
22 19 Male No degree -1 -1 1

first case, you are testing whether depression is associated with the outcome
i a population that has the same proportional group size as your sample. In
the second case, you are testing whether depression is associated with the

outcome in a population that has equal numbers in each group.

2 A worked-out example

These issues may be harder to understand in the abstract than they are in a
concrete, specific case. In my experience, working through a good example
can be a very good way of understanding these issues. In this section, I
work through an example taken verbatim from Maxwell and Delaney (7, pp.

273-281).



Table 2: Means and standard deviations for the salary data

Gender Degree No degree Total

N N N
Female 8 25 (1.51) 4 17 (2.16) 12 22.3 (4.27)
Male 3 27(2) 7 20 (1.41) 10 22.1 (3.70)
Total 11 25.5 (1.81) 11 18.9 (2.21) 22 22.2 (3.93)

The example is as follows: Suppose we are interested in whether or not
there is gender discrimination with respect to employee salaries at a partic-
ular firm. We collect the data displayed in Table 1 from a random sample
of employees, and begin our analysis. The example data set is summarized
in Table 2.

2.1 Descriptive statistics

There are important conceptual issues that can be illuminated simply by
looking at the means of the 4 groups created by crossing gender with educa-
tion status. Additional issues specific to hypothesis testing will be discussed
later: for now, let’s take a look at this hypothetical data set and see what
we can learn from it.

One way to approach the issue is to note that the “totals” columns in
Table 2 are not the simple averages of the two averages. They are the
weighted means, meaning that cells with larger n’s are weighted more heavily
than cells with smaller n’s. For example, if we calculate the average of the
female group based on the average of the female/education and female/no
education groups, we get a value of 21, which is a full 1.333 points lower
than the marginal mean of 22.333 displayed in Table 2. When cell sizes are
equal, these two methods of calculating means will be equal, but they are
clearly not in the present example. So we have a decision to make: which
means should we use?

It turns out that the question of which mean to use is equivalent to the
question of which hypothesis to test described in Section 1.1. If we use the
mean of all females to represent the female group mean (i.e., the marginal
means displayed in Table 2), we are testing the effects of Gender at the
levels of Education that exist in our sample. That is, we are ignoring the



Education variable, and simply describing the levels of salary that exist for
men and women. If we use the mean of the means, we are testing the effects
of gender controlling for education. This will be allow us to make meaningful
inferences about the relation between gender and salary in a population with
equal numbers in each group.

Hopefully the issue is now becoming clearer. If we calculate the Female
mean salary based on the average salary of all females, we get a value of
22.333. The corresponding mean for males is 22.1. These are in fact the
means of females and males in this sample, and they indicate that females
in this company are more highly paid than males. The problem is that the
apparent female advantage may not be due to gender, but rather to the fact
that females in this sample are much more likely to hold college educations.
Plotting the data as in Figure 1 makes this obvious. So, we can calculate
the marginal means based in the mean of the group means (also known as
“unweighted” means). In this case we get a mean for females of 21 and a
mean for males of 23.5, which suggests that being female is associated with
lower rather than higher pay.

The “unweighted” approach to calculating the marginal means is not
necessarily better than the “weighted” approach. Both ways of calculating
the marginal means are legitimate, and it is up to you, the researcher, to
have a clear sense of what kind of question you are asking. If you go with
the unweighted approach, you are saying that you don’t care that females
at the firm make more money than males: you want to know the association
between gender and salary, after removing any confounding of gender with
education. If you go with the weighted approach, you are saying that you
don’t care whether the differences between males’ and females’ salary can
be explained by education: you just want to know who gets paid more, men
or women.

2.2 Inferential statistics

Hopefully the preceding section helped you to understand the issues that
arise when analyzing unbalanced data sets. Unfortunately, the story is not
over, because one needs to be careful to conduct the appropriate test of
their hypotheses when working with unbalanced data. In this section, I
work through an analysis of the gender and education data described above

in order to illustrate how to test these different hypotheses.

As a first step to analyzing these data using multiple regression, we can
construct numerical contrast codes. Contrast codes for these variables can
be constructed as shown below.



Salary: main effects and 2-way interactions
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Figure 1: Salary as a function of Education, gender, and the gender X
education interaction. The upper-left panel displays the difference between
the average female salary and average male salary at each level of education,
and suggests that being female is associated with lower salary. The lower-
left panel displays the gender effect ignoring education, and suggests that
males make slightly less than females (medians are represented by dots).
The right-hand panels display the analogous information for the education
effect.
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Table 3: Correlations among the contrast-coded variables

Salary con.gender con.education

Salary

con.gender .03

con.education  .8Gwx 37

con.gen.x.edu .17 -.04 .10
Group con.gender  con.education con.gen.r.edu
Female with education 1 1 1
Female without education 1 -1 -1
Male with education -1 1 -1
Male without education -1 -1 1

Note that the contrasts in this matrix are orthogonal, but that the contrast
coded variables themselves are correlated, as shown in Table 3. These cor-
relations are a direct consequence of the unequal cell sizes in this data set.
Because the contrast-coded variables overlap, the semi-partial correlations
will differ from the raw correlations, and the SS for each term will differ
depending on which other contrast-coded variables are in the model.

2.2.1 An unweighted means analysis

In this section I analyze the gender and education data using an unweighted
means analysis. This is equivalent to saying that I want to control for
gender when interpreting the effect of education, and that I want to control
for education when interpreting the effect of gender. This is the appropriate
analysis if you want to know if females are underpaid relative to males given
the observed levels of education in the sample. Another way to say this
is that we don’t want the gender variable contaminated by the variance it
shares with education: we want to know what the effect of gender is holding
education constant.

The analysis proceeds very straightforwardly: simply regress salary onto
the three contrast codes representing gender, education, and the gender by
education interaction. The result is displayed in Table 4, and the inter-
pretation is straightforward: Gender is negatively associated with salary,
and education is positively associated with salary. The interaction is not
significant.



Table 4: Regression coefficients for gender and education predicting salary
using unweighted means

Estimate Std.Error  tvalue  Pr(> |t])

(Intercept) 22.25 0.3844  57.8799 0.0000

con.gender —-1.25 0.3844 —3.2517 0.0044

con.education 3.75 0.3844 9.7550 0.0000

con.gen.x.edu 0.25 0.3844 0.6503 0.5237
R? = 0.8456

Table 5: Type III ANOVA table for the gender and education data

SumSq  Df  Fvalue  Pr(>F)
(Intercept) 9305.7902 1 3350.0845 0.0000

con.gender 29.3706 1 10.5734 0.0044
con.education 264.3357 1 95.1608 0.0000
con.gen.x.edu 1.1748 1 0.4229 0.5237
Residuals 50.0000 18

In the ANOVA tradition, the analysis just described is referred to as a
Type III sums of squares analysis. This is simply another way of saying that
all the contrast codes were entered at the same time, i.e. that each reported
effect is controlling for the others. A Type III ANOVA table gives essentially
the same information as the regression analysis with all the contrast codes
entered simultaneously, although the information is reported in a different
format (see Table 5).

The fact that the interaction term is not significant raises an additional
issue: if there is no interaction, why not let the two main effect terms take
credit for any overlap between them and the interaction term?

Type II squares is similar to Type III, except that the main effects are
interpreted without controlling for their overlap with the interaction term.
The main effects are calculated controlling for the other main effect. If there
is no interaction in the population this approach can give more sensitive tests
of the main effects hypotheses, but will give biased estimates of the main
effects if there is an interaction in the population. A Type IT ANOVA table
is presented as Table 6.



Table 6: Type IT ANOVA table for the gender and education data

SumSq Df Fovalue Pr(>F)

con.gender 30.4615 1 10.9662 0.0039
con.education 272.3918 1 98.0611 0.0000
con.gender:con.education 1.1748 1 0.4229 0.5237
Residuals 50.0000 18

The main effects are interpreted in the same way as before, i.e., the effect
of gender is controlling for the correlation between gender and education
and vice-versa. To do this type of analysis in regression, simply enter the
main effects in the first step of a hierarchical regression, and then enter the
interaction in the second step. The resulting coefficients and significance
tests are displayed in Table 7. Note that the significance tests in Table 7
are not the same as those in Table 6. The reason for this is simply that in
the ANOVA analysis the error term was taken from the whole model (i.e.,
the significance tests were performed using model 2 error terms), while in
the regression analysis the error terms used were the error terms at that
particular stage of the model (i.e., model 1 error terms). Model 1 error
terms may make more sense in this case because if you are assuming the
interaction in the population is zero, you are also assuming any variance
accounted for by the interaction term must be due to chance.

In the preceding analysis, we have been trying to answer the question
“what is the association between gender and salary, controlling for educa-
tion?” The answer is clear enough: being female (as opposed to male) is
associated with lower salary. But there is a different question that we might
also be interested in. In particular, we might want to know “Who makes
more money in this company: men or women?” The preceding analysis did
not tell us that. To answer this question we need to employ a weighted
means approach.

10



Table 7: Regression coefficients for gender and education predicting salary
controlling for main effects but not the interaction (Type II approach)

Estimate  Std.Error  tvalue  Pr(> |t])

Step 1: Main effects

(Intercept) 22.3427 0.3516  63.5502 0.0000
con.gender —1.2692 0.3774 —3.3630 0.0033
con.education 3.7797 0.3758  10.0565 0.0000
Step 2: Add interaction
(Intercept) 22.2500 0.3844  57.8799 0.0000
con.gender —1.2500 0.3844 —3.2517 0.0044
con.education 3.7500 0.3844 9.7550 0.0000
con.gen.x.edu 0.2500 0.3844 0.6503 0.5237

Step 1 R2 = 0.842 | Step 2 R2 = 0.8456

2.2.2 A weighted means analysis

Type I SS is also sometimes called sequential sums of squares, because the
terms are added to the model one at a time. Thus the first term entered
into the analysis will get credit for any overlap with the other predictors.
If we want to know whose salaries are higher in this fictitious company, we
can perform Type I sums of squares ANOVA, making sure to enter gender
into the model first. The resulting ANOVA table is displayed as Table 8.

This same analysis can be done in multiple regression, simply by pre-
dicting salary from gender, without controlling for the other contrast coded
variables. The resulting coefficients are displayed in Table 9. The first thing
you may notice is that the significance tests are quite different from those in
the ANOVA output presented in Table 8. Again, the reason for this is simply
that the ANOVA approach uses the error term from the full model (model 2
error) while the regression output uses the error term from the model with
gender as the only predictor. The model 2 error based significance test can
be calculated by hand using the error term from the full regression presented
in Table 4.

11



Table 8: Type I ANOVA table for the gender and education data

Df SumSq MeanSq Fuvalue Pr(>F)
con.gender 1 0.2970 0.2970  0.1069 0.7475
con.education 1 2723918 272.3918 98.0611 0.0000
con.gen.x.edu 1 1.1748 1.1748 0.4229 0.5237

Residuals 18 50.0000

2.7778

Table 9: Regression coeflicient

for gender predicting salary (Type I ap-

proach)
Estimate Std.Error  tvalue — Pr(>|t])
Step 1: Gender alone
(Intercept) 22.2167 0.8611  25.8001 0.0000
con.gender 0.1167 0.8611 0.1355 0.8936
Step 2: Add education term
(Intercept) 22.3427 0.3516  63.5502 0.0000
con.gender —1.2692 0.3774 —3.3630 0.0033
con.education 3.7797 0.3758  10.0565 0.0000
Step 3: Add interaction term
(Intercept) 22.2500 0.3844  57.8799 0.0000
con.gender —1.2500 0.3844 —3.2517 0.0044
con.education 3.7500 0.3844 9.7550 0.0000
con.gen.x.edu 0.2500 0.3844 0.6503 0.5237

Step 1 R? = 0.0009 | Step 2 R? = 0.842 | Step 3 R? = 0.8456

12



Notice that the sign of the gender coefficient reversed in this analysis
compared to the previous two. This is telling us that females actually make
more money in this company than males (although the difference is not
significant). If we care about that fact, than we have been using the correct
technique in this section: we would have totally missed it based on the
ANOVA and regression analyses performed in Section 2.2.1. If we don’t care
about this, and we actually are interested in whether women are getting
paid a fair wage given their level of education, we have been doing the
wrong analysis in this section: the analysis conducted in the previous section
indicates that the slight advantage females have is entirely due to their higher
levels of education, and that controlling for this confounding variable females
actually get paid less.

3 Summary and conclusions

Once you really wrap your head around these issues, you may start to wonder
what all the fuss is about. At the end of the day, the issues are very similar to
situations involving two continuous predictors. A part of the confusion new
initiates to the unbalanced factorial design often experience is probably due
to the proliferation of terms, i.e, “T'ypes” of SS, “weighted” vs. “unweighted”,
and “Model 1”7 vs. “model 2” error terms.

Once you get past the jargon, it should become clear that the real issue
is that there are different questions that one can ask, and consequently there
are different analyses that need to be done in order to answer these different
questions. The main thing is simply the question of what to do about shared
variance: do you want to control for it, or ignore it? Hopefully this article
has helped you make sense of this issue.
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Appendix: R code

HERHHHHBHHHHBRGHH BB FHRBRGHF B H R R BB #
### chunk number 1: Load and create example data sets
HHBHAHHHRHEEEEEEEE R R R
library(car)# For type II and type II SS
library(Design) # for utility functions
options("contrasts" = c("contr.sum", "contr.poly")) # Use orthogonal contrasts
options(scipen=50)
HE##HHHHHAR strip zeros function ######H##H
strip0 <- function(x) {

save.dims <- dim(x)

save.dimnames <-dimnames(x)

x.mat.1l <- as.matrix(x)

x.mat.2 <- matrix(x.mat.1l, nrow=1)

x.stripped <- sub("-0.", "-.", x.mat.2, fixed=TRUE)
x.stripped <- sub("0.", "~.", x.stripped, fixed=TRUE)
x.mat <- matrix(x.stripped)

dim(x.mat) <- save.dims
dimnames(x.mat) <- save.dimnames
x <- as.data.frame(x.mat)
return(x)

}

###H#SH##H#E corstars function #H####H###HH

corstars <- function(x){

require (Hmisc)

x <- as.matrix(x)

R <- rcorr(x)$r

p <~ rcorr(x)$P

## define notions for significance levels; spacing is important.
mystars <- ifelse(p < .001, "\{\\tiny **x*\} ",
ifelse(p < .01, "\{\\tiny**\} ",
ifelse(p < .05, "\{\\tiny*\} ", " ")))

## trunctuate the matrix that holds the correlations to two decimal
R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1]

## build a new matrix that includes the correlations with their apropriate stars
Rnew <- matrix(paste(R, mystars, sep=""), ncol=ncol(x))

diag(Rnew) <- paste(diag(R), " ", sep="")

rownames (Rnew) <- colnames(x)

colnames (Rnew) <- paste(colnames(x), "", sep="")

## remove upper triangle

Rnew <- as.matrix(Rnew)
Rnew[upper.tri(Rnew, diag = TRUE)] <- "
Rnew <- as.data.frame(Rnew)

14



## remove last column and return the matrix (which is now a data frame)
Rnew <- cbind(Rnew[1:length(Rnew)-11)

## strip leading zeros as per APA style
Rnew <- stripO(Rnew)

## provide the result
return(Rnew)

}

#write the meansd function
meansd <- function(x) {
tmp.mean <- format(mean(x), digits=3)
tmp.sd <- format(sd(x), digits=3)
mean.sd <- paste(tmp.mean, " (",tmp.sd,")", sep="")
mean.sd <- as.matrix(mean.sd)
names (mean.sd) <- "Mean (SD)"
return(mean.sd)

# Create unbalanced example
Salary <- c(24,26,25,24,27,24,27,23,15,17,20,16,25,29,27,19,18,21,20,21,22,19)
Gender <- factor(c(rep("Female", 12), rep("Male", 10)))
Education <- factor(c(rep("Degree",8),
rep("No degree", 4),
rep("Degree", 3),
rep("No degree", 7)))
con.gender <- c(rep(1, 12), rep(-1, 10))
con.education <- c(rep(1,8), rep(-1, 4), rep(1l, 3), rep(-1, 7))
con.gen.x.edu <- con.gender*con.education
dl <- data.frame(Salary, Gender, Education, con.gender, con.education, con.gen.x.edu)

H# S
### chunk number 2: Present the data set
pas s B s S S s s S S S S S S S S S
latex(dl, file="", title="",

table.env=FALSE, booktabs=TRUE,

size ="small", math.col.names=TRUE)

R
### chunk number 3: Summarize the data
IR
tmp <- summary(Salary ~ Gender + Education, data=dl, method="cross", fun=mean)
tmt <- summary(Salary ~ Gender + Education, data=dl, method="cross", fun=meansd)
latex(tmt, file="", title="",
caption="Means and standard deviations for the salary data",
label="tab:sum", booktabs=TRUE,

15



size ="small", math.col.names=TRUE)

Hit S S
### chunk number 4: create interaction Plot
SR H

library (HH)

library(lattice)

ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme
ltheme$strip.background$col <- "transparent" ## change strip bg
lattice.options(default.theme = ltheme) ## set as default

trellis.device(color = FALSE)

pdf (file="figl.pdf", width=7.5,height=7)
interaction2wt(Salary ~ Gender + Education, data=dl)
dev.off()

HHBHHHHHHHH AR HAHHAHBRHHEH B H AR HEFHRFH AR HEH B H B H RS H
### chunk number 5: Make table showing contrast matrix for dataset 1
HHHSHHRH R H AR AR R R
con.gender <- c(1,1,-1,-1)
con.education <- c(1,-1,1,-1)
con.gen.x.edu <- c(1,-1,-1,1)
tmp2 <- as.matrix(cbind(con.gender,con.education,con.gen.x.edu))
rownames (tmp2) <- c("Female with education",
"Female without education",
"Male with education",
"Male without education")
latex(tmp2, file="", title="Group", booktabs=TRUE,
table.env=FALSE, size ="small", math.col.names=TRUE)

b B b S S e e e S e e e s st 2

### chunk number 6: Create correlation matrix

HHEHGHGHH R RS

latex(corstars(di[,c(1,4:6)]), file="", title="", booktabs=TRUE, caption="Correlations among the contras

S S s s s
### chunk number 7: construct the regression output for the unweighted analysis
HHHHEEEHEHEEHEHEEEEHHEEEEHHBHEHHBEEHHEEEE B
uw.model <- 1lm(Salary ~ con.gender + con.education + con.gen.x.edu, data=dl)
latex (round (summary (uw.model) $coefficients, digits=4),
file="", title="",
booktabs=TRUE,
caption="Regression coefficients for gender and education predicting salary using unweighted means
label="tab:unweighted-regress",
insert.bottom=paste("\\centering\{$R"2 =$",round (summary(uw.model)$r.squared, digits=4),
"\}", sep=" "), size ="small", math.col.names=TRUE)
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IR
### chunk number 8: Construct a type 3 anova table
I
latex(round(Anova(uw.model, type="III"), digits=4),
file="", title="", booktabs=TRUE,
caption="Type III ANOVA table for the gender and education data",
label="tab:t3anova", size ="small", math.col.names=TRUE)

B S S R R S

### chunk number 9: Construct a type 2 anova table

B s s

t2.model <- 1m(Salary ~ con.gender*con.education, data=d1)

latex(round (Anova(t2.model, type="II"), digits=4),
file="", title="", booktabs=TRUE,
caption="Type II ANOVA table for the gender and education data",
label="tab:t2anova", size ="small", math.col.names=TRUE)

LE s s s s s s

### chunk number 10: run regression analysis following the type 2 approach
IR

m.model <- Im(Salary ~ con.gender + con.education, data=d1)

all.coefs2 <- round(rbind(summary(m.model)$coefficients,
summary (uw.model) $coefficients),
digits=4)

latex(all.coefs2,

rgroup=c("Step 1: Main effects", "Step 2: Add interaction"),

n.rgroup=c(3,4), file="", title="",

booktabs=TRUE,

caption="Regression coefficients for gender and education predicting salary controlling for main

label="tab:m.model",

insert.bottom=paste("\\centering\{Step 1 $R"2 =$",round(summary(m.model)$r.squared, digits=4), " |
round (summary (uw.model) $r.squared, digits=4),"\}",
sep=" "),

size ="small", math.col.names=TRUE)

S
### chunk number 11: construct type 1 anova table
HHE R
latex(round(anova(uw.model), digits=4),
file="", title="", booktabs=TRUE,
caption="Type I ANOVA table for the gender and education data",
label="tab:tlanova", size ="small", math.col.names=TRUE)
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### chunk number 12: run regression analysis following the type 1 approach
B s

model <- lm(Salary ~ con.gender, data=dl)

all.coefsl <- round(rbind(summary(model)$coefficients,
summary (m.model)$coefficients,
summary (uw.model) $coefficients),
digits=4)

latex(all.coefsi,

rgroup=c("Step 1: Gender alone",
"Step 2: Add education term",
"Step 3: Add interaction term"),

n.rgroup=c(2,3,4), file="", title="",

booktabs=TRUE,

caption="Regression coefficient for gender predicting salary (Type I approach)",

label="tab:model",

insert.bottom=paste("\\centering\{Step 1 $R"2 =§",
round (summary (model) $r.squared, digits=4),
" | Step 2 $R"2 =$",round(summary(m.model)$r.squared, digits=4),
" | Step 3 $R"2 =$",round(summary(uw.model)$r.squared, digits=4),
"\}", sep=""),

size ="small", math.col.names=TRUE)
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